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Abstract
The forest gap crucially influences forest environments, but its effects on local fungal community assembly are not fully
understood. In this study, the fungal community in a weeping cypress forest was investigated as a function of forest gap locations
based on forest clearing, using amplicon sequencing of the ITS2 region. The results showed that the fungal community signif-
icantly varied with the variations in soil properties related to gap location. Deterministic processes played pivotal roles in fungal
community assembly, which was mainly driven by the temperature, moisture, available nitrogen, and microbial carbon in soil.
Beta diversity of the fungal community increased from the gap center to the closed canopy. The relative abundances of dominant
orders such as Microascales, Sordariales, and Chaetothyriales regularly varied as a function of gap location, and they were
potential indicators for different gap locations. Based on network analysis, gap locations caused distinct co-occurrence patterns of
fungal communities. This study shed light on the roles of forest gaps in the assembly of local fungal communities and provided
additional strategies to manage forest ecosystems.
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Introduction

The formation of forest gaps was usually caused by natural
disasters and forest succession (Allen et al. 2010; Muscolo
et al. 2014), and the artificial formation of forest gaps as
effective forest management had recently increased
(Mallik et al. 2014; Yang et al. 2017). Forest gaps played

a crucial role in forest ecology by preventing the creation
of low-efficiency forests caused by very dense distribu-
tions, and thus forest gaps provided spaces for the coloni-
zation of other species and preserving biodiversity (Gray
et al. 2012; Muscolo et al. 2014). Forest soil underlying the
forest ecology was also heavily influenced by forest gaps.
Soil temperature and moisture at different gap locations
were different because of distinct net radiation, rainfall,
and plant transpiration (Ritter et al. 2005; Sariyildiz
2008; Zhu et al. 2003). Usually, the soil temperature at
the gap center (GC) was higher than that at the gap border
(GB) (Ritter et al. 2005), but the regulation of soil moisture
by forest gaps was much more complicated, because lots of
factors such as vegetation, rainfall, net radiation, and even
microsite variation were involved (Gray et al. 2002; Ritter
et al. 2005; Sariyildiz 2008; Zhu et al. 2003). Soil nutrient
cycling also showed distinct scenarios at different forest
gap locations. The availability of carbon, nitrogen, and
phosphorus from the decomposition of plant litter de-
creased from GC to the closed canopy (CC) (He et al.
2016b), which was possibly related to the high decompo-
sition rate of litter at the CC (Zhang and Zak 1995). Less
litter input and root exudates were found in the GC than
CC (Schliemann and Bockheim 2014; Xu et al. 2016),
probably resulting in low nutrient levels in the soil. In
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forest ecosystems, soil microbial communities played piv-
otal roles in litter decomposition and vegetation growth
(Baldrian 2017; Peltoniemi et al. 2015; Singh et al.
1989), and were affected by forest gaps. From the GC to
the CC, microbial activity increased (Zhang and Zak
1995), and the microbial compositions evaluated by phos-
pholipid fatty acid analysis varied (Yang et al. 2017). Soil
enzyme activity and substrate decomposition, which were
partly regulated by microorganisms, had also been compre-
hensively investigated at forest gap locations (He et al.
2016a; Muscolo et al. 2007; Yang et al. 2017). Soil micro-
organisms were influenced by soil temperature, moisture,
and nutrient levels (Baldrian 2017; Peltoniemi et al. 2015;
Singh et al. 1989), and they played crucial roles in organic
matter transformation and the development of vegetation in
soil (Harantová et al. 2017). Both the deterministic pro-
cesses (environmental selections) and stochastic processes
(ecological drift and dispersal) underlying microbial com-
munity assembly were tightly related to the stability and
succession of microbial community (Zhou et al. 2014) and
thus were crucial for understanding the roles of forest gaps
in microbial community assembly. Microorganisms with
different phylogenetic affiliations probably employed dis-
tinct trophic strategies (Nguyen et al. 2016). Although
there were some investigations into the effects of forest
gaps on microbial communities (Yang et al. 2017; Zhang
and Zak 1995), the assembly mechanism, taxonomic com-
position, and trophic strategies of microbial communities
with forest gap locations were not fully understood. Fungal
community usually forms mycorrhizal associated with
vegetation and was the primary decomposers of vegetation
litter (Harantová et al. 2017). Taken together, forest gaps
crucially influenced fungal community in forest soil, and
the investigation of fungal communities was essential to
reveal the effects of forest gaps on forest ecosystem struc-
ture and function, yet elusive in the literature.

Weeping cypress (Cupressus funebris) has been com-
prehensively used for afforestation in China. The artifi-
cial formation of gaps in weeping cypress forests
prevented not only the formation of low-efficiency for-
ests but also disturbance to the local fungal community.
However, rare attentions had been paid on the influences
of gap locations of weeping cypress on local fungal
community. In this study, the variation in fungal com-
munity along the gap locations in a weeping cypress
forest was investigated based on amplicon sequencing
of an internal transcribed spacer (ITS). The main goals
were to reveal the (i) fungal diversity and composition
in response to the gap locations, (ii) mechanisms (deter-
ministic and stochastic processes) underlying fungal
community assembly at the gap locations, and (iii) main
environmental drivers and fungal indicators for specific
gap locations.

Materials and methods

Site description

The study was conducted in forests (31° 04′N, 104° 25′ E, and
510 to 530 m above sea level) located in Hexin Town,
Sichuan, China. The annual mean temperature ranged from
15 to 17 °C, with maximum and minimum temperatures of
25 °C and 5 °C, respectively. The annual precipitation is ap-
proximately 906 mm. The forests were mainly dominated by
weeping cypress (C. funebris), which had been comprehen-
sively used for afforestation in China. Due to high density and
lack of proper management, the canopy had become low-
efficiency forests. Other trees were German oak (Quercus
acutissima), alder (Alnus cremastogyne), paper mulberry
(Moraceae broussonetia), tungoil tree (Vernicia fordii), and
privet (Ligustrum lucidum). The shrub layers were linden ar-
rowwood (Viburnum dilatatum), Chinese sumac (Rhus
chinensis), and pyracantha (Pyracantha fortuneana). The herb
layers were brake (Pteris multifida), sedge (Carex
brunnea), and hispid arthraxon (Arthraxon hispidus).
Detailed information about local environments was given
by Yulin (Yulin et al. 2014).

Experimental design and soil sampling

In April 2012, eight similar oval gaps (ca. 20m × 14m in size)
were created by cutting trees in a low-efficiency forest of
weeping cypress with an average tree height/diameter at breast
height (DBH) of 6.5 m/8.0 cm and a canopy density greater
than 0.8. The distances between the centers of adjacent gaps
were at least 40 m. In forest gaps, other vegetations such as
grasses and herbs were also removed. In October 2017 when
sampling was conducted, in each forest gap, there was a sim-
ilar vegetation cover such as some new establishments of
grasses, herbs, and shrub. Soil samples were collected from
three locations, the gap centers (GC), gap boarders (GB), and
closed canopy (CC), within each gap. In each location, 3 plots
(4 m apart from each other) were selected in areas without
mushroom or other macrofungi. In each plot (1 m × 1 m), five
soil cores (5 cm in depth, 5 cm in diameter) were collected.
Then, all the 15 soil cores which were evenly distributed in
one gap location were pooled together to form a composite
sample. In total, 24 composite soil samples were collected
from 3 locations in 8 gaps. The soil samples were sieved
through a 2.0-mm mesh and then used for measurements of
soil properties and genomic DNA extraction.

Soil property analysis

Soil temperature (ST) and soil moisture (SM) were recorded
by a Thermochron iButton Device (DS1921-G, Maxim
Integrated, San Jose, CA, USA). Soil organic carbon (SOC)
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was measured by wet oxidation with potassium, soil total
nitrogen (STN) by the Kjeldahl method, soil available nitro-
gen (SAN) by a modified Conway method (Stanford et al.
1973), soil total phosphorus (STP) using HCLO4 digestion
and colorimetric assay (Jackson 1958), and soil microbial car-
bon (SMC) and nitrogen (SMN) by the chloroform fumigation
incubation method (Hart et al. 1994).

DNA extraction and MiSeq sequencing of ITS
amplicons

Soil genomic DNAwas extracted with the PowerSoil DNA kit
(MoBio, Carlsbad, CA, USA). Two-round PCR amplification
was conducted with universal primers ITS4 (5′-TCCT
CCGCTTATTGATATGC-3′) and gITS7F (5 ′-GTGA
RTCATCGARTCTTTG-3′), which target the fungal ITS2 re-
gion of the ribosome encoding genes (Žifčáková et al. 2016).
The details of the PCR procedure were described previously
(Žifčáková et al. 2016). The PCR products were pooled and
purified with the QIAquick Gel Extraction Kit (Omega,
Norcross, GA, USA). In total, 24 samples were prepared for
sequencing with the MiSeq platform (Illumina, San Diego,
CA, USA).

Data analysis

Sequence data analysis

The analysis of amplicon sequence was conducted with
QIIME Pipeline version 1.9.0 (Caporaso et al. 2010). All se-
quence reads were sorted based on their unique barcodes,
trimmed for sequence quality, and clustered at 97% similarity
for identification of operational taxonomic units (OTUs). The
removal of chimera sequences was conducted with the
UCHIME algorithm (Edgar et al. 2011). The phylogenetic
affiliation of each sequence was conducted based on the
Ribosomal Database Project classifier. Each sample was
resampled to equal numbers of sequences (12,276 reads per
sample) for downstream analysis. The original sequencing
data were available at the European Nucleotide Archive by
accession at PRJE25917 (http://www.ebi.ac.uk/ena/data/
view/PRJEB25917).

Statistical analysis

Principal coordinate analysis and permutational multivariate
analysis of variance (PerMANOVA) based on the Bray-Curtis
distance were conducted in R (http://www.r-project.org/) to
evaluate the general changes in the fungal community at dif-
ferent gap locations. Mantel and partial Mantel tests,
Spearman’s correlation, the Wilcoxon rank sum test, random
forest algorithms with 9999 trees, and the indicator analysis
based on the functionmultipatt were conducted in R. p values
were adjusted by the methods of FDR (Benjamini and
Hochberg 1995). The deterministic process underlying fungal
community assembly (Zhou et al. 2014) was evaluated by a
Bnull model test^ at the pipeline (http://ieg.ou.edu/
microarray/) by keeping alpha and gamma diversity
constant, using the Bray-Curtis distance of the fungal commu-
nity, without a phylogenetic tree which is highly unreliable
based on ITS sequences. Prediction of the trophic mode of
the fungal community was performed with FUNGuild
(Nguyen et al. 2016) by retaining only the taxa with confi-
dences of probable and highly probable. Co-occurrence net-
work analysis was performed based on OTUs with an occur-
rence > 2 and average relative abundance > 0.1% in each gap
location. Spearman’s correlations between two taxa with a
correlation coefficient > |0.6| and an adjusted p value
(Benjamini and Hochberg 1995) < 0.05 were considered sta-
tistically robust. Meanwhile, 9999 Erdös–Rényi random net-
works (Erdos and Rényi 1960) with the same number of nodes
and edges as each correspondingly observed network were
generated using the function erdos.renyi.game in R. The visu-
alizations of networks were realized by Gephi software
(https://gephi.github.io/)

Results

Soil properties

Principal coordinate analysis and PERMANOVA tests
showed that forest gaps significantly affected local soil prop-
erties (R2 = 0.964, p < 0.001). Compared with CC, forest gaps
(GC and GB) resulted in significantly lower SM, STN, SAN,
SMC, and SMN but higher ST in their soil (Table 1).

Table 1 Soil properties among different gap locations

ST SM SOC STN SAN STP SMC SMN

GC 22.288 ± 0.164a 74.198 ± 0.558a 52.754 ± 0.718a 2.528 ± 0.074a 151.351 ± 3.422a 0.223 ± 0.027a 491.25 ± 9.483a 79.25 ± 4.559a

GB 21.025 ± 0.167b 79.544 ± 0.175b 60.168 ± 3.995b 1.863 ± 0.036b 161.8 ± 4.368b 0.251 ± 0.02b 625.125 ± 54.02b 50.875 ± 4.704b

CC 19.788 ± 0.113c 85.923 ± 0.353c 59.363 ± 1.34b 3.196 ± 0.063c 184.838 ± 4.777c 0.251 ± 0.025b 959.25 ± 25.9c 85.625 ± 3.503c

Data are expressed as the average ± SD. Different letters in the same column denote statistically significant at p < 0.05
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Specifically, SM, SAN, and SMC significantly decreased, but
ST increased from GC to CC (Table 1). In consideration of
that only ST, SM, SAN, and SMC regularly responded to gap
locations, it was deduced that the environmental variations
caused by gap locations were mainly represented by the four
soil properties.

Overall variations in the fungal community

The complete coverages of fungal communities were con-
firmed by rarefaction curves (Supplementary Fig. S2).
Principal coordinate analysis and PERMANOVA tests
showed significant variations (R2 = 0.21674, p = 0.001) in
fungal communities at different gap locations (Fig. 1 and
Supplementary Table S1). All the soil properties except STN
and SMN significantly contributed to the variations in fungal
communities. The Mantel and partial Mantel tests were used
to further evaluate the relation between the fungal community
and soil properties (Table 2). Based on the Mantel test, all the
soil properties except SOC, STP, and SMN showed significant
positive correlations with the fungal community. However,
the results of a partial Mantel test showed that when other soil
properties were separately controlled, in most of cases, only
ST, SM, SAN, and SMC still significantly correlated with the
fungal community. Consequently, ST, SM, SAN, and SMC
significantly contributed to the differentiation of fungal com-
munities among different forest gaps.

A null model method was used to evaluate the effects of
deterministic vs. stochastic processes on fungal community
assembly. All the observed fungal community assemblies
were significantly distinguished from the random null expec-
tation (p < 0.01), indicating that the fungal communities were
mainly shaped by deterministic processes (Table 3). Thus, gap

locations influenced the fungal community through determin-
istic processes, and these processes were likely to be mainly
driven by ST, SM, SAN, and SMC. Standardized effect size
(SES) is commonly used as a quantitative index for determin-
istic processes (Zhou et al. 2014), and it was greatest at GC
(p < 0.01), followed by GB and CC (Table 3), which indicated
that the effects of deterministic processes on fungal commu-
nity assemblies decreased from GC to CC. Interestingly, a
shift in the SES corresponded well with changes in ST, SM,
SAN, and SMC as a function of gap location.

The beta diversity of the fungal community was lowest at
GC (p < 0.05), followed by GB and CC (Supplementary
Fig. S3), indicating that the highest similarity (lowest varia-
tion) among fungal communities was at GC, followed by
those at GB and CC. The beta diversity significantly correlat-
ed with ST, SAN, and SMC (Supplementary Table S2). This
shift in beta diversity was usually determined by environmen-
tal heterogeneity and/or the trade-off between stochastic and
deterministic processes.

Variations in fungal composition

The alpha diversities of fungal communities showed nonsig-
nificant differences among different gap locations and nonsig-
nificant correlations with nearly all the soil properties
(Supplementary Table S3), indicating that gap locations barely
influenced the alpha diversities of fungal communities.

Based on FUNGuild, the trophic modes of fungal com-
munities were predicted (Supplementary Table S4). Only
the trophic modes of pathotrophs and saprotrophs showed
significant differences among different gap locations. The
relative abundance of pathotrophs increased from GC to
CC, and it showed significantly positive correlations with
SM and SOC. However, the relative abundance of
saprotrophs decreased from GC to CC, and showed signif-
icant correlations with ST, SM, SOC, SAN, and SMC. The
variations in fungal trophic modes were undoubtedly re-
lated to variations in fungal composition. At the phylum
level, all the fungal communities were dominated by
Ascomycota (> 86%) and Basidiomycota (> 9%), and the
relative abundances of nearly all the phyla showed non-
significant differences among different gap locations and non-
significant correlations with soil properties (Supplementary
Table S5). At the order level, the relative abundances of
Microascales and Sordariales decreased from GC to CC, but
that of Chaetothyriales showed the opposite trend (Fig. 2).
The relative abundances of the above three orders showed
significant correlations with all the soil properties except
STN and SMN (Supplementary Table S6). Most of the
OTUs in the three orders were saprotrophic (Supplementary
Table S6). The relative abundance of Verrucariales was sig-
nificantly higher (p < 0.01) at the CC (11.3%) than at forest
gaps (GC = 2.7%; GB = 1.9%), but it did not regularly

Fig. 1 The principal coordinate analysis of fungal community based on
Bray-Curtis distance among different groups. The solid point represents
the centroid in each group. The circle represents 95% confidence interval
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respond to gap locations (Fig. 2). Nearly all OTUs in
Verrucariales were symbiotrophic. The relative abundance
of Eurotiales was lower at GC than at GB and CC (Fig. 2)
and significantly positively correlated with only SOC
(Supplementary Table S6). The other orders rarely showed
significant correlations with soil properties (Supplementary
Table S6). Thus, it seemed that gap locations mainly influ-
enced the distributions of the orders Microascales,
Sordariales, and Chaetothyriales. At the OTU level, the
OTUs discriminating among different gap locations were
identified based on a random forest analysis (Fig. 3). Among
the OTUs, the relative abundances of 16 OTUs affiliated with
Scedosporium (OTU74, OTU91, OTU206, and OTU4979),
Ascomycota (OTU487, OTU557, and OTU3832),
Agaricomycetes (OTU34 and OTU449), Eurotiomycetes
(OTU44 and OTU3470), Microascaceae (OTU39 and
OTU670), Phialemonium (OTU89 and OTU670), and
Aspergillus (OTU231) decreased from GC to CC and signif-
icantly positively correlated with ST but negatively correlated
with SM, SOC, SAN, and SMC (Fig. 3). However, the relative
abundance of OTU362 (Phialophora) increased from GC to
CC and significantly positively correlated with SM, SOC,
STN, SAN, STP, and SMC but negatively correlated with
ST (Fig. 3). Furthermore, there were more indicator species
at GC than GB and CC (Supplementary Table S7). The indi-
cator species at GC were mainly aff i l ia ted with
Dothideomycetes, those at GB were mainly affiliated with
Penicillium, and those at CC were mainly affiliated with

Phialophora. Although, the indicator species in each gap lo-
cation showed high diversity at OTU level, most of them were
affiliated with the orders Microascales and Chaetothyriales.
Consequently, the distributions of these OTUs were crucially
influenced by gap locations.

Co-occurrence of fungal microorganisms

All the three networks at different gap locations clearly
showed greater network modularity than the corresponding
Erdös–Rényi random networks (Fig. 4), suggesting modu-
lar structures in the three networks (Newman 2006).
Fungal co-occurrence patterns were clearly distinct at dif-
ferent gap locations. For example, the co-occurring taxa
affiliated with the six orders showed different distributions
of degree at gap locations (Fig. 4). The network of GB had
the most nodes and edges, followed by those of CC and GC
(Fig. 4 and Supplementary Table S9), which indicated that
the fungal co-occurrence was stronger at GB than at other
gap locations. There were fewer connections at GC than
GB and CC, which indicated the effects of forest on fungal
co-occurrence. There were not OTUs affiliated with the
order Chaetothyriales in the network at GC, which was
probably related with its low relative abundance at GC.
However, there were not OTUs affiliated with the order
Microascales in the any of networks, even though it was
abundant despite gap locations.

Table 2 Mantel and partial Mantel tests for the correlations between soil properties and fungal community based on Bray-Curtis distance

Mantel test ST SM SOC STN SAN STP SMC SMN
0.2201** 0.2592** 0.1556 0.1763* 0.3962** 0.1366 0.3528** 0.1153

Controlling variables in the
partial Mantel test

ST NA 0.1404 0.04475 0.07413 0.3576** 0.1144 0.2979** 0.07497

SM − 0.000265 NA 0.04891 0.01004 0.3511** 0.1287 0.2754** 0.05417

SOC 0.1636* 0.2152* NA 0.1559* 0.3693** 0.1008 0.3205** 0.09264

STN 0.1526* 0.1932* 0.1318 NA 0.3698** 0.1409* 0.3178** − 0.03009
SAN − 0.125 − 0.1729 0.01961 − 0.08866 NA 0.08281 0.0006107 0.02527

STP 0.2074** 0.2553** 0.1256 0.1796* 0.3832** NA 0.3431** 0.1085

SMC − 0.09811 − 0.1241 0.007458 − 0.07197 0.1927** 0.1056 NA 0.0268

SMN 0.2025** 0.2395** 0.1398 0.1375 0.3823** 0.1309 0.3366** NA

The significances are tested based on 999 permutations. **p < 0.01; *p < 0.05. The italic entries represent the controlled variable. NAmeans inapplicable

Table 3 The significance test of
centroid differences between the
observed communities and the
null model simulations based on
Bray-Curtis distance

Actual
centroid

Null
centroid

F p Standardized effect
size (SES)a

GC 0.31 0.578 112.573 < 0.001 46.137 ± 10.156

GB 0.388 0.582 25.665 < 0.001 20.283 ± 8.135

CC 0.426 0.576 15.957 0.001 9.935 ± 4.468

aMean significant differences (p < 0.01) of SES among groups
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Discussion

Differential responses of fungal taxa to specific gap
locations

Fungi at different taxonomic levels differentially
responded to distinct gap locations. At the phylum level,
there were not significant differences among distinct gap
locations, which was probably due to the overdominance
of Basidiomycota and especially Ascomycota at all gap
locat ions. Overdominances of Ascomycota and
Basidiomycota in soil fungal communities had been ob-
served in many studies (Buee et al. 2009; Mandarano
et al. 2018), and they were two large phyla containing
thousands of species with distinct environmental adap-
tions (Schoch et al. 2009; Watkinson et al. 2015).
Thus, although fungal species differentially responded
to diverse environments (Fig. 1), such distinct responses
are rarely observed at phylum level.

At the order level, the relative abundances of only
Microascales, Sordariales, and Chaetothyriales regularly var-
ied as a function of gap location, indicating their sensitivity to
environmental variations.Microascales and Sordariales were
abundant at GC and mainly performed as saprotrophs. Thus,
these two orders, especiallyMicroascales, contributed greatly
to the high relative abundances of saprotrophs at GC. These
two orders were reported to favor high temperatures
(Langarica-Fuentes et al. 2014) at which saprotrophy is prob-
ably enhanced. Thus, temperature was probably a crucial driv-
er in determining the distribution of the two orders as a func-
tion of gap location. The taxa in Chaetothyriales mainly per-
formed saprotrophic and a combination of pathotrophic and
saprotrophic modes. In consideration of the low relative abun-
dance of Chaetothyriales at GC, Chaetothyriales contributed
less to both the trophic modes than the other two varying
orders. Consequently, Microascales, Sordariales, and
Chaetothyriales were indicator taxa differentiating different

gap locations, and the two formers mainly caused the shift in
saprotrophs in the fungal community.

Among the discriminatory OTUs, only 17 OTUs regularly
varied as a function of gap location. Most of these OTUs were
affiliated in the orders Microascales, Sordariales, and
Chaetothyriales, which partly supported the finding that the
three orders were indicators for gap locations. The relative
abundances of Scedosporium apiospermum (OTU91 and
OTU206) and Scedosporium prolificans (OTU74 and
OTU4979) decreased from GC to CC. Although the two spe-
cies were pathogenic (Cooley et al. 2007), they probably con-
tributed less to pathotrophs whose relative abundances dif-
fered nonsignificantly as a function of gap location.
S. apiospermum was recently regarded as an indicator for
ecosystems exposed to anthropogenic influence (Al-Yasiri
et al. 2017). Here, the artificial forest gap possibly resulted
in the high abundance of S. apiospermum. Additionally, the
17 OTUs significantly correlated with ST, SM, SOC, SAN,
and SMC, further indicating that the environmental gradient
caused by forest gaps crucially affected the distributions of
these OTUs. Interestingly, at both the order and OTU levels,
these indicators significantly correlated with multiple soil
properties such as ST, SM, SAN, SMC, and SOC, whereas
in partial correlations controlling the other soil properties, al-
most all indicators did not significantly correlate with any of
soil properties (Supplementary Table S8). Thus, it was de-
duced that the integrative effects caused by these soil proper-
ties constitute an environmental gradient as a function of gap
location to drive fungal distribution. The results based on
Mantel and partial Mantel tests (Table 2) further ensured the
crucial roles of ST, SM, SAN, and SMC in shaping fungal
communities. The co-occurrence patterns of fungal communi-
ties were also crucially influenced by gap location. Microbial
co-occurrence usually infers tight relationships between mi-
croorganisms (Banerjee 2016). Thus, forest gaps crucially in-
fluenced not only fungal composition but also relationships
between individuals.

Fig. 2 The relative abundance of
fungal taxa at order level. Only
the taxa with average relative
abundance of > 0.1% are shown.
Significant differences were
shown. Single asterisk indicates
p < 0.05, and double asterisks
indicate p < 0.01
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Fungal community assembly driven by forest gaps

In this study, forest gaps resulted in significant environ-
mental heterogeneity in soil, mainly by regulating ST, SM,
SAN, and SMC. The high ST and low SM at GC were
mainly attributed to solar irradiation, and low SAN and
SMC were probably due to less litter input and root exu-
dates at these sites than at other sites (Schliemann and
Bockheim 2014; Xu et al. 2016). Interestingly, the four
soil properties also mainly contributed to significant dif-
ferences in the fungal community assembly at different
gap locations. ST and SM were physicochemical

properties that were crucial for influencing the microbial
community (Baldrian 2017; Peltoniemi et al. 2015), and
SAN and SMC indicate nutrient level (Singh et al. 1989).
Thus, the four soil properties could be agents that influ-
ence fungal community assembly in soil at the forest gaps.
However, how forest gaps influence fungal community
assembly by regulating the four soil properties should be
further determined.

The deterministic process affecting community assembly
was mainly environmental filtering (Chase and Myers 2011).
Many studies had described environmental filtering crucially
affecting fungal community assembly (Clemmensen et al.

Fig. 3 The heat map depicts the relative abundances of OTUs selected by
random forest and Spearman’s correlations between OUT abundances
and soil properties. The top 50 OTUs based on the values of mean
decrease in the Gini index are selected and only the ones with average

relative abundances of > 0.1% are shown. The cells are colored based on
log10 (relative abundances) and correlation coefficients, respectively.
Double asterisks indicate p < 0.01; single asterisk indicates p < 0.05.
The lowest annotation level of OTU is shown aside the OTU number
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2015; Harantová et al. 2017; Kivlin et al. 2014; Urbanová
et al. 2015). The shift in the SES was in accordance with the
SM, SAN, and SMC values but opposite to the ST trend,
further supporting the crucial roles of environmental filter-
ing in a deterministic process in fungal community assem-
bly. Fungi were strictly heterotrophic (Boer et al. 2005),
and they heavily depended on the nutrient availability in
soil. The low nutrient availability at GC created relatively
harsh environments where only adaptable fungi could sur-
vive, which undoubtedly enhanced environmental filter-
ing. The high ST and low SM at GC related to other sites
might increase pressure on fungi (Baldrian 2017;
Peltoniemi et al. 2015) and strengthen deterministic

processes. The deterministic processes drove the assembly
of communities with similar adaption to environmental
pressures and promoted high similarity among fungal com-
munities with similar assembly processes. This reason like-
ly explained the decrease in the beta diversity of fungal
communities from CC to GC. Additionally, at CC, the un-
even distributions of trees, litter input, and root exudates
probably resulted in enhanced heterogeneity in local envi-
ronments, which increased the beta diversity of the fungal
community. SAN and SMC positively correlated with the
beta diversity, which further implied that high nutrient
levels improved the dispersion of fungal communities.
Surprisingly, although forest gaps crucially influenced the

Fig. 4 Network analyses of fungal communities at different gap locations. The nodes in the networks are colored by module class
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beta diversity of the fungal community, alpha diversity did
not show significant differences among different gap loca-
tions, even without significant correlations between alpha
diversities and nearly all the soil properties. Some studies
also showed that the alpha diversity of fungal communities
was to some extent resistant to environmental heterogene-
ity (She et al. 2018; Zhang et al. 2018; Zhang et al. 2017).
In this manner, alpha diversity prevented from great varia-
tions caused by forest gaps and even the loss of alpha
diversity in fungal communities.

In summary, forest gaps significantly influenced the fungal
community, mainly by regulating ST, SM, SAN, and SMC.
The environmental gradient created by forest gaps significant-
ly influenced the fungal community in terms of its beta diver-
sity, deterministic processes, abundances of species, and co-
occurrence patterns. However, it should be noted that the for-
est gaps were generated for only 5 years, so this study could
shed light on the initial effects of forest management on fungal
community assembly.
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